Resident Crews of the International Space Station (ISS)

ISS: Expedition 24

hi res version (232 KB)

hi res version (295 KB)

hi res version (568 KB)

hi res version (763 KB)

alternate crew photo

alternate crew photo

 

hi res version (859 KB)

 

alternate crew photo

Crew, launch- and landing data

No.: 1 2 3 4 5 6
Nation:
Surname:  Skvortsov  Korniyenko  Caldwell-Dyson  Yurchikhin  Walker  Wheelock
Given names:  Aleksandr Aleksandrovich Jr.  Mikhail Borisovich  Tracy Ellen  Fyodor Nikolayevich  Shannon  Douglas Harry
Position:  ISS-CDR  Flight Engineer  Flight Engineer  Flight Engineer  Flight Engineer  Flight Engineer
Spacecraft (Launch):  Soyuz TMA-18  Soyuz TMA-18  Soyuz TMA-18  Soyuz TMA-19  Soyuz TMA-19  Soyuz TMA-19
Launch date:  02.04.2010  02.04.2010  02.04.2010  15.06.2010  15.06.2010  15.06.2010
Launchtime:  04:04 UTC  04:04 UTC  04:04 UTC  21:35 UTC  21:35 UTC  21:35 UTC
Spacecraft (Landing):  Soyuz TMA-18  Soyuz TMA-18  Soyuz TMA-18  Soyuz TMA-19  Soyuz TMA-19  Soyuz TMA-19
Landingdate:  25.09.2010  25.09.2010  25.09.2010  26.11.2010  26.11.2010  26.11.2010
Landingtime:  05:23 UTC  05:23 UTC  05:23 UTC  04:46 UTC  04:46 UTC  04:46 UTC
Mission duration:  176d 01h 19m  176d 01h 19m  176d 01h 19m  163d 07h 11m  163d 07h 11m  163d 07h 11m
Orbits:  2772  2772  2772  2570  2570  2570

unofficial Backup Crew

No.: 1 2 3 4 5 6
Nation:
Surname:  Borisenko  Samokutyayev  Kelly  Kondratiyev  Nespoli  Coleman
Given names:  Andrei Ivanovich  Aleksandr Mikhailovich  Scott Joseph  Dmitri Yuriyevich  Paolo Angelo  Catherine Grace "Cady"
Position:  ISS-CDR  Flight Engineer  Flight Engineer  Flight Engineer  Flight Engineer  Flight Engineer

hi res version (780 KB)

hi res version (742 KB)

Expedition Report

Launch from the Baikonur Cosmodrome (Fyodor Yurchikhin, Shannon Walker and Douglas Wheelock with Soyuz TMA-19). Aleksandr Skvortsov, Mikhail Korniyenko and Tracy Caldwell-Dyson were onboard since April 04, 2010 (arrival with Soyuz TMA-18).

On June 28, 2010 Fyodor Yurchikhin, Shannon Walker and Douglas Wheelock boarded the Soyuz TMA-19 vehicle that docked to Zvezda on June 18, 2010. They flew the Soyuz vehicle a short distance to Rassvet. The change of location made the Zvezda port free for the docking of a new Progress resupply vehicle on July 02, 2010. That port is the preferred location for the Progress, so it can help reboost the station and adjust its altitude.

The Progress M-06M was launched successfully on June 30, 2010 at 15:35 UTC. The cargo ship was loaded with 870 kilograms (1,920 lb) of propellant, 50 kilograms (110 lb) of oxygen and air, 100 kilograms (220 lb) of water and 1,210 kilograms (2,670 lb) of equipment, spare parts and experiment hardware.
While approaching the ISS on July 02, 2010, the spacecraft aborted the docking procedure after a critical communications error. The spacecraft bypassed the station at a safe distance. According to the official statement of the Moscow mission control, the approach to the ISS went normally until the distance of around 2 kilometers (1.2 mi) when the ship's KURS automated rendezvous system issued a command prohibiting further "dynamic operations". The telemetry between the spacecraft and the ISS was lost about 25 minutes before planned docking. According to NASA, the most likely cause of the aborted docking was traced to the activation of the TORU "Klest" TV transmitter, which created interference with TORU manual rendezvous system, causing a loss of the TORU command link between spacecraft and the ISS that triggered the abort of the Progress docking. The Russian flight control team later confirmed that the KURS system operated normally during the aborted docking attempt and did not fail, as was initially believed.
Shortly after the abort, the situation was evaluated and a second attempt at docking on July 04, 2010 was planned and subsequently succeeded. Flying on autopilot using the KURS automated system, the spacecraft docked to the aft docking port of Zvezda. The Expedition 24 crew members monitored the arrival of the spacecraft and as a precautionary measure TORU was not activated for the second attempt. The docking occurred over four-corner border of Russia, Kazakhstan, China and Mongolia. Hooks and latches were engaged a few minutes later and the crew members entered the Progress around 19:30 UTC.
An ISS reboost assisted by the attitude thrusters of Progress M-06M was initiated on July 16, 2010 to improve conditions for the landing of Soyuz TMA-18 and the docking of Progress M-07M. Following the commands from the space station Russian Segment Central Computer, the engines of the Progress M-06M spacecraft were started at 06:42:30 UTC. The operation lasted 1065 seconds raised the orbit of the space station by 3.7 km to 355.2 km.
The Progress M-06M spacecraft loaded with trash and other items for disposal, undocked from the International Space Station at 11:25 UTC on August 31, 2010. Following undocking, Progress M-06M remained in orbit to conduct an experiment designation Radar-Progress. It was deorbited over the Pacific Ocean on September 06, 2010, with debris falling into an area known as the spacecraft cemetery. The retroburn was initiated at 16:13:50 Moscow time and the remaining parts of the Progress, which had not burnt during the reentry, fell down in the area of 42°07'S 138°25'W at about 16:53 Moscow time.

The first EVA was performed by Fyodor Yurchikhin and Mikhail Korniyenko on July 27, 2010 (6h 42m) to prepare the recently delivered Russian Rassvet Module for future automated dockings by Russian spacecraft. The spacewalk also included routing and mating Command and Data Handling cables on the Zvezda and Zarya modules. A video camera was removed and replaced from the aft end of Zvezda which will be used to provide television views of the final approach and docking of future European Automated Transfer Vehicles carrying cargo to the complex. This was the 25th Russian spacewalk and the 147th spacewalk overall in support of station assembly and maintenance.
During the spacewalk, two objects were detected floating away from the station. One was tentatively identified as a cable clamp, left outside the station from a previous Russian spacewalk. That object and another, not conclusively identified, both departed well below the vicinity of the complex and pose no threat to the orbiting laboratory.

On July 31, 2010 the ammonia pump module that is part of coolant loop A, mounted on the right side of the station's main power truss, failed. A problem somewhere in the system caused a circuit breaker to trip, setting off multiple alarms and waking the crew. With half the station's cooling gone, flight controllers were forced to shut down two of the station's four U.S. control moment gyroscopes, used to help maintain the lab's orientation in space, one communications channel, several solar power current converters and a variety of computer control boxes known as multiplexer-demultiplexers.
Tracy Caldwell-Dyson and Douglas Wheelock assisted with the powerdowns and hooked up jumper cables between the Russian Zarya module and the U.S. segment of the station to prevent additional cooling problems.
The space station remained in a safe configuration throughout, officials said, with critical life support systems, computers and communications gear operating with coolant loop B. The six-member crew, they said, was never in any danger.
Several hours later flight controllers attempted to restart the stalled pump, resetting the circuit breaker that opened late Saturday. Once again, the crew was awakened by alarms.
Later in the morning, engineers restarted one of the two powered-down control moment gyroscopes and while the main bus switching units that direct power to various subsystems ran hotter than normal, engineers said the lab was stable.
The space station features two independent coolant loops that use ammonia circulating through huge radiators to dissipate the heat generated by the station's electronic systems. Each loop is fed by a large tank of ammonia that includes an internal bellows pressurized by nitrogen. That pressurization system allows the loops to handle the periodic expansion and contraction of the ammonia coolant due to temperature changes in orbit.
Spare coolant system components, including two pump modules, are mounted on external stowage platforms, one on the left side of the station and the other on the right, just ahead of the Quest airlock module. Meanwhile the managers decided to fix the problem in two difficult spacewalk repair jobs.

A first EVA for repair work by Douglas Wheelock and Tracy Caldwell-Dyson occurred on August 07, 2010 (8h 03m). They removed hose clamps and then started disconnecting umbilicals from the broken space station coolant pump. However, difficulty unplugging one of the ammonia lines consumed a couple of hours and a leak seen from that connector once it finally cooperated prevented the astronauts from progressing any further in their work.
Original plans had called for the pump's removal and installation of the new pump today, with a second spacewalk on August 11, 2010 to finish hooking up the replacement and stowing the old one.

The second EVA was again performed by Douglas Wheelock and Tracy Caldwell-Dyson on August 11, 2010 (7h 26m) to repair the failed pump. They removed the old pump and stowed it on a payload attachment bracket on the Mobile Base System on the station's truss while preparing the replacement pump for its removal from a stowage platform adjacent to the Quest airlock and its installation on the truss during a third spacewalk.
Douglas Wheelock successfully closed the quick disconnect valve for the fourth and final fluid connector for the failed pump, and detached the final fluid line from the failed pump. Tracy Caldwell-Dyson demated five electrical and data cables while Douglas Wheelock broke torque and removed four bolts from the old pump. The pump was extracted from the truss through the use of a grapple bar and installed on a payload bracket on the Mobile Base System on the station's truss. Tracy Caldwell-Dyson then prepared the spare pump for future installation, disconnecting three of five electrical cables and reconfiguring insulation.

The third and final EVA for repair work by Douglas Wheelock and Tracy Caldwell-Dyson occurred on August 16, 2010 (7h 20m) to repair the failed pump. The astronauts performed the installation of a spare ammonia pump module on the S1 Truss. The pump module was successfully installed on the S1 Truss after Douglas Wheelock attached four bolts and Tracy Caldwell-Dyson mated five electrical connectors.

Progress M-07M was launched at 10:22:28 UTC on September 10, 2010. The launch had previously been scheduled to occur at 11:11 UTC on September 08, 2010, however it was delayed due to unfavorable weather conditions. Docking with the aft port of the Zvezda module of the ISS had been scheduled for around 12:37 UTC on September 10, 2010, however due to the launch delay, it occurred on September 12, 2010 at 11:58 UTC. The approval to begin the 11-minute final approach was issued by the Russian flight controllers after assessing the systems during a brief stationkeeping hold with about 167.6 meters (550 ft) between the space station and the Progress spacecraft. The docking was executed flawlessly by the Kurs automated rendezvous system.
Progress M-07M carried 2,515 kilograms (5,545 lb) of cargo to the International Space Station. This consisted of 1,120 kilograms (2,470 lb) of fuel, 49 kilograms (108 lb) of oxygen, and 210 kilograms (460 lb) of water. The remaining 1,136 kilograms (2,504 lb) was dry cargo, including components for the station's life support system, equipment for conducting maintenance and repairs, supplies for sanitation and hygiene, food, medical equipment, clothes and parcels for the cosmonauts aboard the station, cameras, and supplies for outfitting the Zarya, Poisk and Rassvet modules.
Progress M-07M was used for three maneuvers to raise the orbit of the International Space Station. The first, which used eight of the Progress spacecraft's attitude control thrusters, was carried out on September 15, 2010. The engines ignited 09:04 UTC, and burned for 526 seconds, raising the orbit of the space station by 2 kilometers (1.2 mi) to 356 kilometers (221 mi), in preparation for the undocking and landing of Soyuz TMA-18 on September 25, 2010, and for the docking of Soyuz TMA-01M on October 10, 2010. A second orbit raising maneuver was conducted at 19:41 UTC on October 20, 2010, in preparation for the docking of Progress M-08M. The maneuver lasted 228.7 seconds, and left the space station in an orbit with a perigee of 350.7 kilometers (217.9 mi) and an apogee of 375.7 kilometers (233.4 mi). Progress M-08M was launched on October 27, 2010, and successfully docked two days later. The third maneuver was conducted on December 22, 2010, when eight thrusters were again used to raise the space station's orbit. This maneuver raised the orbit of the space station by 4.2 kilometers (2.6 mi) to 352.9 kilometers (219.3 mi) in preparation for the arrival of the Progress M-09M spacecraft, which is scheduled to launch on January 28, 2011, and for the docking of Space Shuttle Discovery on the STS-133 mission.
It remained docked to the space station until February 20, 2011 when it undocked to make way for the Johannes Kepler Automated Transfer Vehicle. After undocking it was deorbited to a destructive reentry over the spacecraft cemetery in the Pacific Ocean. Filled with trash and spent equipment on board the ISS, Progress M-07M drowned in the Pacific Ocean at 07:58 pm Moscow time.

A failure in the docking ring on the Mini-Research Module 2 (MRM-2) Poisk, caused a delay in the planned landing of the Soyuz TMA-18 spacecraft. Soyuz TMA-18 was originally planned to undock and land on September 24, 2010, but instead undocked less than 24 hours later on September 25, 2010. The failure is believed to be due to a faulty indication from a micro-switch on the hatch between the Soyuz and MRM-2. A drive gear, which is related to the docking mechanism was also found to have two broken teeth, and is believed to be related to the problem as well.

During the stay on board of the ISS the crews of Expeditions 23 / 24 carried out the following scientific experiments:
3D-Space (Mental Representation of Spatial Cues During Space Flight),
ALTEA-Dosi (Anomalous Long Term Effects in Astronauts' - Dosimetry),
ALTEA-Shield (Anomalous Long Term Effects in Astronauts' Central Nervous System - Shield),
APEX-CSA2 (Advanced Plant Experiment - Canadian Space Agency 2),
ARISS (Amateur Radio on the International Space Station),
Aryl (Influencing Factors of Space Flight on Expression of Strains of Interleukin),
Astrovakcina (Cultivation in Weightless of E.coli- Producer of the Caf1 Protein),
Bacteriophage (Investigation of the Effects of Space Flight Factors on Bacteriophages),
Bar (Choice and Development of Methods and Instruments to Detect the Location of a Loss of Pressurization of a Module on ISS),
Bif (Investigation of the Effects of Space Flight Factors on the Technological and Biomedical Characteristics of Bifidobacterium),
Biodegradation (Initial stage of Biodegradation and Biodeterioration in Space),
Bioemulsia (Research and Development of a Self-Contained Reactor of the Shielded Type For Production of Biomass of Microorganisms and Biologically Active Substances),
Biological Rhythms (The Effect of Long-term Microgravity Exposure on Cardiac Autonomic Function by Analyzing 24-hours Electrocardiogram),
Biorisk (Influence of Factors of the Space Environment on the Condition of the System of Microorganisms-Hosts Relating to the Problem of Environmental Safety of Flight Techniques and Planetary Quarantine),
BISE (Bodies In the Space Environment: Relative Contributions of Internal and External Cues to Self - Orientation, During and After Zero Gravity Exposure),
Bisphosphonates (Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss),
BRIC-16-Cytoskeleton (Biological Research In Canisters - 16: Investigations of the plant cytoskeleton in microgravity with gene profiling and cytochemistry),
BRIC-16-DNA (Biological Research In Canisters - 16: The Impact of Spaceflight on Arabidopsis: Deep Sequencing and DNA Arrays as Collaborative Readouts of the Transcriptome of Arabidopsis Seedlings and Undifferentiated Cells in Space),
BRIC-16-Regulation (Biological Research In Canisters -16: Actin Regulation of Arabidopsis Root Growth and Orientation During Space Flight),
BTN-M1 (Examination of the Flow of High Speed and Thermal Neutrons),
CEO (Crew Earth Observations),
CSLM-2 (Coarsening in Solid Liquid Mixtures-2),
CVB (Constrained Vapor Bubble),
DECLIC-ALI (DEvice for the study of Critical LIquids and Crystallization - Alice Like Insert),
DECLIC-DSI (DEvice for the study of Critical LIquids and Crystallization - Directional Solidification Insert),
DECLIC-HTI (DEvice for the study of Critical LIquids and Crystallization - High Temperature Insert),
DOSIS-DOBIES (Dose Distribution Inside ISS - Dosimetry for Biological Experiments in Space),
DTN (Disruption Tolerant Networking for Space Operations),
Dykhanie (Regulation and Biomechanics of Respiration in Space Flight),
EarthKAM (Earth Knowledge Acquired by Middle School Students),
EKE (Assessment of Endurance Capacity by Gas Exchange and Heart Rate Kinetics During Physical Training),
Ekon (Experimental Survey on Evaluating the Possibility of Using th Russian Segment of ISS for Environmental Inspection of Work Areas of Various Facilities (Features)),
EPO-Cloud Observation-Demos (Education Payload Operations-Cloud Observation-Demonstrations),
EPO-Demos (Education Payload Operation - Demonstrations),
ERB-2 (Erasmus Recording Binocular - 2),
ExPRESS Payload Simulator (ExPRESS Payload Simulator),
Facet (Investigation of Mechanism of Faceted Cellular Array Growth),
Ferulate (Regulation by Gravity of Ferulate Formation in Cell Walls of Rice Seedlings),
Fish Scales (Investigation of the Osteoclastic and Osteoblastic Responses to Microgravity Using Goldfish Scales),
FLEX (Flame Extinguishment Experiment),
FLEX-2 (Flame Extinguishment Experiment - 2),
Functional Task Test (Physiological Factors Contributing to Changes in Postflight Functional Performance),
Genara-A (Gravity Related Genes in Arabidopsis - A),
HREP-HICO (HICO and RAIDS Experiment Payload - Hyperspectral Imager for the Coastal Ocean),
HREP-RAIDS (HICO and RAIDS Experiment Payload - Remote Atmospheric and Ionospheric Detection System (RAIDS)),
HydroTropi (Hydrotropism and Auxin-Inducible Gene expression in Roots Grown Under Microgravity Conditions),
Hypersole (Cutaneous Hypersensitivity and Balance Control in Humans),
Impuls (Impulse),
Integrated Cardiovascular (Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias),
Integrated Immune (Validation of Procedures for Monitoring Crewmember Immune Function),
IVGEN (IntraVenous Fluid GENeration for Exploration Missions),
Izgib (Effect of Performance of Flight and Science Activities on the Function of On-Orbit Systems on ISS (Mathematical Model)),
JAXA-AstroReport (Japan Aerospace and Exploration Agency - Astronaut Report),
JAXA EPO 1 (Japan Aerospace Exploration Agency Education Payload Observation 1),
JAXA EPO 2 (Japan Aerospace Exploration Agency Education Payload Observation 2),
JAXA EPO 3 (Japan Aerospace Exploration Agency Education Payload Observation 3),
JAXA EPO 5 (Japan Aerospace Exploration Agency Education Payload Observation 5),
JAXA PCG (Japan Aerospace Exploration Agency Protein Crystal Growth),
Kids In Micro-g (Kids In Micro-gravity (2009-2010)),
Kontur (Development of a System of Supervisory Control Over the Internet of the Robotic Manipulator in the Russian Segment of ISS),
Lactolen (Influence of Factors of Space Flight on Lactolen Producer Strains),
MAI-75 (Space Devices and Modern Technology for Personal Communication),
MAXI (Monitor of All-sky X-ray Image),
Micro-2 (Gravitational Effects on Biofilm Formation During Space Flight),
MISSE-7 (Materials International Space Station Experiment - 7),
Mouse Immunology (Mouse Antigen-Specific CD4+ T Cell Priming and Memory Response during Spaceflight),
MSL-CETSOL and MICAST (Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions),
MyoLab (Molecular Mechanism of Microgravity-Induced Skeletal Muscle Atrophy - Physiological Relevance of Cbl-b Ubiquitin Ligase),
NanoRacks-CubeLabs Module-1 and -3 (NanoRacks-CubeLabs Module-1 and -3),
NanoRacks-CubeLabs Module-2 and -4 (NanoRacks-CubeLabs Module-2 and -4),
Nanoskeleton (Production of High Performance Nanomaterials in Microgravity),
NeuroRad (Biological Effects of Space Radiation and Microgravity on Mammalian Cells),
NLP-Cells-3 (National Laboratory Pathfinder - Cells - 3: Jatropha Biofuels),
NLP-Cells-4 (National Laboratory Pathfinder - Cells - 4: Jatropha-2),
NLP-Vaccine-MRSA (National Laboratory Pathfinder - Vaccine - Methicillin-resistant Staphylococcus aureus),
NLP-Vaccine-Salmonella (National Laboratory Pathfinder - Vaccine - Salmonella),
Nutrition (Nutritional Status Assessment),
OChB (Influence of Factors of Space Flight on Superoxide Strain Producer),
Otolith (Otolith Assessment During Postflight Re-adaptation),
Passages (Scaling Body-Related Actions in the Absence of Gravity),
Pilot (Individual Characteristics of Psychophysiological Regulatory Status and Reliaility of Professional Activities of Cosmonauts in Long Duration Space Flight),
Plasma Crystal (Dusty and Liquid Plasma Crystals in Conditions of Microgravity),
Pneumocard (Examination of the Influencing Factors of Space Flight on Autonomic Regulation of Blood Circulation, Respiration and Cardiac Contractile Function in Long Duration Space Flight),
Poligen (Revealing Genotypical Characteristics, Defining Individual Differences in Resistance of Biological Oranisms to Factors of Long Duration Space Flight),
Pro K (Dietary Intake Can Predict and Protect Against Changes in Bone Metabolism during Spaceflight and Recovery),
Reaction Self Test (Psychomotor Vigilance Self Test on the International Space Station),
Relaksatia (Processes of Relaxation in the Ultraviolet Band Spectrum by High Velocity Interaction of Exhaust Products on ISS),
Repository (National Aeronautics and Space Administration Biological Specimen Repository),
Rusalka (Development of Methods to Determine the Carbon Dioxide and Methane (Greehouse Gases) Content in the Earths Atmosphere from On-Board ISS),
SAME (Smoke and Aerosol Measurement Experiment),
SEDA-AP (Space Environment Data Acquisition Equipment - Attached Payload),
SIMPLEX (Shuttle Ionospheric Modification with Pulsed Localized Exhaust Experiments),
Sleep-Long (Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long),
Sleep-Short (Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Short),
SMILES (Superconducting Submillimeter-Wave Limb-Emission Sounder),
SNFM (Serial Network Flow Monitor),
SODI-Colloid (Selectable Optical Diagnostics Instrument - Aggregation of Colloidal Solutions),
SOLO (SOdium LOading in Microgravity),
Sonokard (Physiological Functions (cardio-respiratory) of Humans Using Contactless Methods During Sleep in Long Duration Space Flight),
SpaceDRUMS (Space Dynamically Responding Ultrasonic Matrix System),
SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites),
SPHERES-Zero-Robotics (Synchronized Position Hold, Engage, Reorient, Experimental Satellites-Zero-Robotics),
Spinal Elongation (Spinal Elongation and its Effects on Seated Height in a Microgravity Environment),
Sreda (Examination of the Features of IS as an Environment for Conducting Research),
STL-Microbial Immunity (Space Tissue Loss - Microbial Immunity),
STL-Regeneration (Space Tissue Loss - Stem Cell Regeneration),
TAGES (Transgenic Arabidopsis Gene Expression System),
Taste In Space (Taste In Space),
Thermolab (Thermoregulation in Humans During Long-Term Spaceflight),
Tipologia (Study of the Typological Characteristis of ISS Crew Operators Activity at the Stages of Long Term Space Flight),
Tropi (Analysis of a Novel Sensory Mechanism in Root Phototropism),
Try Zero-G (Try Zero-Gravity),
Uragan (Hurricane: Experimental Development of Groundbased System of Monitoring and Predicting the Progression of a Naturally Occurring Technogenic Catastrophe),
Vascular (Cardiovascular Health Consequences of Long-Duration Space Flight),
VCAM (Vehicle Cabin Atmosphere Monitor),
Vektor-T (Study of a High Precision System for Prediction Motion of ISS),
Vessel ID System (Vessel ID System),
Vessel Imaging (Vascular Echography),
VO2max (Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions),
Vsplesk (Burst: Monitoring of Seismic Effects - Bursts of High Energy Particles in Low Earth Space Region (Orbit)),
Vzaimodeystviye (Interactions: Monitoring of Space Crew Interactions During Extended Space Flight),
WAICO (Waving and Coiling of Arabidopsis Roots at Different g-levels),
Zag (Ambiguous Tilt and Translation Motion Cues After Space Flight).

ISS Assembly

Assembly animation (external link)

Photos

more Earth observation photos

more EVA photos


©      

Last update on July 05, 2014.